Ihermochimica Acta, 92 (1985) 619-622 Elsevier Science Publishers B.V., Amsterdam

Na₂CrO₄(I) SCLID SOLUTIONS: CRYSTAL CHEMISTRY, DEFECTS AND IONIC CONDUCTIVITY

J. Philipp and W. Eysel*, Universitat Heidelberg, Germany, and H. Bohm, Universitat Miinster, Germany

ABSTRACT

In the system $\texttt{Na}_2\texttt{CrO}_4\texttt{-CaCrO}_4$ a field of solid solutions Na_{2=x}Ca4+U_x CrO₄ was found extending up to 40% CaCrO₄, i.e. 20%
cation Vacancies ([]). These defects are the reason for a remarkable ionic conductivity with a maximum of $\sigma = 10^{-1}$ ($\Omega \cdot cm$)⁻¹ at 7.5% \Box and at 500°C. In the chromate and the corresponding selenate system four new phases were found: $Na_{c}Ca(CrO_{A})_{A}$, Na₄Ca(CrO₄)₂, Na₄Ca(SeO₄), and high-CaSeO₄.

METHODS

CaCrO₄ was precipitated from aqueous solutions of Na₂CrO₄ and CaCl₂. Then mixtures of CaCrO₄ and Na₂CrO₄ were molten for 3 min. in Pt crucibles at 950°C and quenched in air or liquid N₂ (weight losses l/2%) or slowly cooled in the furnace (weight loss 2%).

The resulting phases were identified by X-ray powder diffraction (Norelco Diffractometer) or Guinier Camera fAEG) with silicon NBS-SRM 640 as internal standard. High temperature Debye Scher'rer patterns were calibrated with α -Al₂O₃ (a = 4.775 and c = 13.036 A at 500°C; a = 4.759 and c = 12.992 Å at 20°C).

For thermal analysis a Du Pont Thermal Analyzer 1090/910 'with microcomputer, DSC-cell (< 700°C) and 12OO'C cell was employed. (For temperature calibration c.f. ref **.l).** In addition a hot stage (Leitz Company, \leq 1350°C) was used with a polarizing microscope.

Ionic conductivities could be determined by impedance measurements (2) since the $Na_2Cro_4(1)$ ss exhibit no significant electronic conductivity (c.f. ref.3).

THE SYSTEM $\text{Na}_2\text{CrO}_4\text{-}\text{CaCrO}_4$

Various methods were used to determine the Na-rich part of the phase diagram Na_2CrO_4 -CaCrO₄. DTA, DSC and high temperature X-ray (Fig.11 results are included in Fig.2. In addition the phases found by X-ray powder diffraction after quenching or slow cooling were identified. The two polymorphs of $\text{Na}_{2}\text{CrO}_{4}$ are called Na_2CrO_4 (III) and Na_2CrO_4 (I) in analogy to the isostructural

Proceedings of **ICTA 85,** Bratislava

modification of Na_2SO_4 , (III) and (I). The latter has a strongly disordered structure (4).

 $Fig.1$ Lattice parameters of Na_2CrO_4 (I) ss at 500°C

$Fig.2$

The system Na₂CrO₄-CaCrO₄

- O High temperature X-ray $results$
- DTA and DSC, heating
- DTA and DSC, cooling \circ

'The system is characterized by a large field of solid solution of Na₂CrO₄(I) and by two low temperature compounds 2:1 = Na₄Ca(CrO₄)₃ and 3:1 = Na₆Ca(CrO₄)₄. Their small stability ranges below 3OO'C were not determined in detail. During investigations in the corresponding system $Na₂SeO₄ - CaSeO₄$ the isostructural $Na_{4}Ca(SeO_{4})$ ₃ and a new modification of CaSeO₄ with scheelite structure were found (Table 1). The latter was obtained by sintering a pellet at 4OO'C for 5 days with subsequent quenching. The 3:l selenate could not be prepared. In contrast to the corresponding $\texttt{Na}_2\texttt{SO}_4(\texttt{I})$ ss (ref.4) the $\texttt{Na}_2\texttt{Cro}_4(\texttt{I})$ ss could not be quenched.

Table 1

Lattice parameters of new compounds Complete powder data were sent to JCPDS for publication in the Powder Data file

Compound	Symmetry	a(R)	C(A)
$Na_{4}Ca(CrO_{4})_{3}$	hexagonal	16,315	22.747
Na_4Ca (SeO ₄) $_3$	hexagonal	16.348	22.853
CaSeO _A	tetragonal	5.047	11,664

IONIC CONDUCTIVITY

The large field of the solid solutions $(Na_{2-2x}Ca_x\Box_x)CrO_4$ implies a massive concentration of cation vacancies \square . They provide "hopping paths" for the remaining $Na⁺$ ions and are the basis of a remarkable ionic conductivity (Fig.3).

Starting from pure $Na₂CrO_A$, the conductivity increases strongly and reaches its maximum at about *7.5%* vacancies. The following decrease is probably due to defect clustering. The maximum value measured was $\sigma = 10^{-1}$ (Ω cm)⁻¹ at 500°C.

A comparison with the isostructural solid solutions of $Na₂SO_A(I)$ shows a surprising agreement, since also for these materials the maxima of the conductidity curves appear at *7.5%* vacancies (3). Due to decomposition reactions corresponding investigations in the system $Na₂SeO₄$ -CaSeO₄ were not possible.

ACKNOWLEDGEMENTS

We are indepted to W. Nagel, **G.** Roth and H. Maltry for experimental help and to the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1 W. Eysel & K.-H. Breuer in: Analytical Calorimetry, Vo1.V (Editors: J.F. Johnson & P.S. Gill), Plenum Publ. Corp., 1984, pp. 67-80
- 2 G. Roth, W. Nagel, H. Böhm, Z. Krist. 159, 105-106, 1982
- 3 H.H. HGfer, W. Eysel and U. v.Alpen, J. Sol. State Chem. 36, 365-370 (1981)
- 4 W. Eysel, H.H. Höfer, K.L. Keester and Th. Hahn, Crystal Chemistry and Structure of $Na₂SO₄(I)$ and its Solid Solutions. Acta Cryst. B, in press