Thermochimica Acta, 92 (1985) 619-622 Elsevier Science Publishers B.V., Amsterdam

Na2Cr04(I) SCLID SOLUTIONS: CRYSTAL CHEMISTRY, DEFECTS AND IONIC CONDUCTIVITY

J. Philipp and W. Eysel*, Universität Heidelberg, Germany, and H. Böhm, Universität Münster, Germany

ABSTRACT

In the system Na₂CrO₄-CaCrO₄ a field of solid solutions Na⁺_{2-x}Ca²⁺_x CrO₄ was found extending up to 40% CaCrO₄, i.e. 20% cation Vacancies ([]). These defects are the reason for a remarkable ionic conductivity with a maximum of $\sigma = 10^{-1} (\Omega \cdot \text{cm})^{-1}$ at 7.5% [] and at 500°C. In the chromate and the corresponding selenate system four new phases were found: Na₆Ca(CrO₄)₄, Na₄Ca(CrO₄)₃, Na₄Ca(SeO₄)₃ and high-CaSeO₄.

METHODS

 $CaCrO_4$ was precipitated from aqueous solutions of Na_2CrO_4 and $CaCl_2$. Then mixtures of $CaCrO_4$ and Na_2CrO_4 were molten for 3 min. in Pt crucibles at 950°C and quenched in air or liquid N_2 (weight losses 1/2%) or slowly cooled in the furnace (weight loss 2%).

The resulting phases were identified by X-ray powder diffraction (Norelco Diffractometer) or Guinier Camera (AEG) with silicon NBS-SRM 640 as internal standard. High temperature Debye Scherrer patterns were calibrated with α -Al₂O₃ (a = 4.775 and c = 13.036 Å at 500°C; a = 4.759 and c = 12.992 Å at 20°C).

For thermal analysis a Du Pont Thermal Analyzer 1090/910 with microcomputer, DSC-cell (≤ 700 °C) and 1200°C cell was employed. (For temperature calibration c.f. ref.1). In addition a hot stage (Leitz Company, ≤ 1350 °C) was used with a polarizing microscope.

Ionic conductivities could be determined by impedance measurements (2) since the Na₂CrO₄(I)ss exhibit no significant electronic conductivity (c.f. ref.3).

THE SYSTEM Na2CrO4-CaCrO4

Various methods were used to determine the Na-rich part of the phase diagram Na_2CrO_4 -CaCrO_4. DTA, DSC and high temperature X-ray (Fig.1) results are included in Fig.2. In addition the phases found by X-ray powder diffraction after quenching or slow cooling were identified. The two polymorphs of Na_2CrO_4 are called Na_2CrO_4 (III) and Na_2CrO_4 (I) in analogy to the isostructural

Proceedings of ICTA 85, Bratislava

modification of Na_2SO_4 , (III) and (I). The latter has a strongly disordered structure (4).

Fig.1 Lattice parameters of Na₂CrO₄(I)ss at 500°C

Fig.2

The system Na₂CrO₄-CaCrO₄

- O High temperature X-ray results
- DTA and DSC, heating
- O DTA and DSC, cooling

The system is characterized by a large field of solid solution of $Na_2CrO_4(I)$ and by two low temperature compounds 2:1 = $Na_4Ca(CrO_4)_3$ and 3:1 = $Na_6Ca(CrO_4)_4$. Their small stability ranges below 300°C were not determined in detail. During investigations in the corresponding system Na_2SeO_4 -CaSeO₄ the isostructural $Na_4Ca(SeO_4)_3$ and a new modification of CaSeO₄ with scheelite structure were found (Table 1). The latter was obtained by sintering a pellet at 400°C for 5 days with subsequent quenching. The 3:1 selenate could not be prepared. In contrast to the corresponding $Na_2SO_4(I)ss$ (ref.4) the $Na_2CrO_4(I)ss$ could not be quenched.

Table 1

Lattice parameters of new compounds Complete powder data were sent to JCPDS for publication in the Powder Data file

Compound	Symmetry	a (Å)	c (Å)
$Na_4Ca(CrO_4)_3$	hexagonal	16.315	22.747
$Na_4Ca(SeO_4)_3$	hexagonal	16.348	22.853
CaSe04	tetragonal	5.047	11.664

IONIC CONDUCTIVITY

The large field of the solid solutions $(Na_{2-2x}Ca_x \Box_x)CrO_4$ implies a massive concentration of cation vacancies \Box . They provide "hopping paths" for the remaining Na⁺ ions and are the basis of a remarkable ionic conductivity (Fig.3).

Fig.3 Ionic conductivity of Na₂CrO₄(I)ss Starting from pure Na_2CrO_4 , the conductivity increases strongly and reaches its maximum at about 7.5% vacancies. The following decrease is probably due to defect clustering. The maximum value measured was $\sigma = 10^{-1} (\Omega \text{ cm})^{-1}$ at 500°C.

A comparison with the isostructural solid solutions of $Na_2SO_4(I)$ shows a surprising agreement, since also for these materials the maxima of the conductivity curves appear at 7.5% vacancies (3). Due to decomposition reactions corresponding investigations in the system Na_2SO_4 -CaSeO₄ were not possible.

ACKNOWLEDGEMENTS

We are indepted to W. Nagel, G. Roth and H. Maltry for experimental help and to the Deutsche Forschungsgemeinschaft for financial support.

REFERENCES

- 1 W. Eysel & K.-H. Breuer in: Analytical Calorimetry, Vol.V (Editors: J.F. Johnson & P.S. Gill), Plenum Publ. Corp., 1984, pp. 67-80
- 2 G. Roth, W. Nagel, H. Böhm, Z. Krist. <u>159</u>, 105-106, 1982
- 3 H.H. Höfer, W. Eysel and U. v.Alpen, J. Sol. State Chem. <u>36</u>, 365-370 (1981)
- 4 W. Eysel, H.H. Höfer, K.L. Keester and Th. Hahn, Crystal Chemistry and Structure of Na₂SO₄(I) and its Solid Solutions. Acta Cryst. B, in press